本文目录一览:
一道数学解直角三角形应用,急急急急急!!
(1)B
连接BD,则△ABD是等腰直角三角形,假设E为AB的中点,有AB=2DE,此时DE最短;假设E点在线段AB上,但不在中点,根据已知可得AE=2DE,且AE>AB,很明显假设不成立.故E点不在AB上,应该在线段BC上;
(2)设货轮从出发到两船相遇共航行了x海里,过D点作DF⊥CB于F,连接DE,则DE=x,AB+BE=2x,
∵D点是AC的中点,
∴DF= AB/2 =100,EF=400-100-2x,
在Rt△DFE中,DE^2=DF^2+EF^2,得x^2=100^2+(300-2x)^2,
解得x=200± 100√6/3,
∵200+ 100√6/3>100,
∴DE=200- 100√6/3.
答:货轮从出发到两船相遇共航行了(200- 100√6/3)海里.
希望回答对你有帮助
高中数学题 解三角形
在解三角形问题时,须掌握的三角关系式
在△ABC 中,以下的三角关系式,在解答有关的三角形问题时,经常用到,要记准、记熟、灵活地加以运用。
4.解斜三角形的问题,通常要根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得出所要求的量,从而得到实际问题的解。其中建立数学模型的思想方法,也是我们学习数学的归宿,用数学手段来解决实际问题,是学习数学的根本目的所在。
解题时应根据已知与未知,合理选择正、余弦定理使用,使解题过程简洁,要达到算法简练,算式工整、计算准确。
(1).解斜三角形应用题的步骤
①准确理解题意,分清已知和未知,准确理解应用题中有关名词、术语,如仰角、俯角、视角、方向角、方位角及坡度、经纬度等;
②根据题意画出图形;
③将要求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识建立数学模型,然后正确求解,演算过程要算法简练,计算准确,最后作答。
(2).实际应用问题中有关名词、术语
①仰角和俯角:与目标视线在同一铅直平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角。
②方向角:从指定方向线到目标方向线的水平角。
③方位角:从指定方向线顺时针到目标方向线的水平角。
④坡度:坡面与水平面所成的二面角的度数。
(3).须熟悉的三角形中的有关公式
解斜三角形主要应用正弦定理和余弦定理,有时也会用到周长公式和面积公式,比如:
( 为三角形的周长)
( 表示 边上的高)
(可用正弦定理推得)
( 为内切圆半径)
还须熟悉两角和差得正弦、余弦、正切及二倍角的正弦、余弦、正切公式。
五、注意点
1.在我们的课本上,推导正弦定理是从直角三角形出发得到的,说明对于直角三角形,正弦定理也是成立的,我们也须知道推导正弦定理的传统方法,是首先推出 ,然后各式均除以 ,即得到正弦定理公式。
课本上是利用向量知识推导正弦定理公式。它是平面向量知识的具体应用。
2.注意正弦定理的变形应用。
我们不难证明 ,(其中R为 外接圆半径)。
这样,正弦定理可有如下一些变形:
, , ;
, , ;
;
, , ;
, , 。
以上这些关系式,可根据问题的条件和求得结论选择加以应用。
3.关于已知两边和其中一边的对角,解三角形的讨论
已知两边和其中一边的对角,不能唯一确定三角形的形状,解这类三角形问题将出现无解、一解和两解的情况,应分情况予以讨论,图1与图2即是表示了在 中,已知 、 和A时解三角形的各种情况
当A为锐角时,
当A为直角或钝角时,
4.余弦定理的每一个等式中均含有四个不同的量,它们分别是三角形的三边和一个角,知道其中的三个量,便可求得第四个量,当已知三边,可以求角,此时利用余弦定理得另一种形式。
一道有难度的数学题(解三角形的)
(1) sinA+sinB=√3sinC
= a+b=√3c
= a+b+c=(√3+1)c
即 (√3+1)c=√3+1
= c=1 即 AB=1
(2) a+b=√3
S=1/2absinC=3/8sinC
= ab=3/4
= a=b=√3/2
= A=B 且 cosA=(1/2)/(√3/2)=1/√3
= sinA=√2/√3
= tanA=√2
= tan(A+B)=tan2A
=2tanA/(1-tan²A)
=-2√2