本文目录一览:
如何测试房间混响时间
各种房间对混响时间的要求如下:
以语言为主的房间(话剧院、报告厅、大教室等),其混响时间在1.2 ~ 1.4s (500Hz);
以电声为主的房间(电影院、歌舞厅等),其混响时间在0.8〜1.0s (500Hz);
以音乐为主的房间(音乐厅、歌剧院等),其混响时间在1.5〜2. Is (500Hz) 0
混响是一种十分普遍的声学现象,其时间长短是衡量室内音质好坏的重要参 数。它关系到语言及音乐的清晰及丰满度。混响时间不能过长,否则会使前后声 音混淆,听不清楚。但是,混响时间也不能过短,过短会使音乐缺乏“回味”, 听起来显得单调“干涩”。这就是说,混响时间应该不长不短,处于最佳。这样 的时间称为“最佳混响时间”。
最佳混响时间主要是根据大量已建房间的试验测定,并通过人们的主观评价 以及统计归纳而得到的。试验表明,房间用途不同,其最佳混响时间也不相同: 主要用于语言的房间,其最佳混响时间要比主要用于音乐的房间短一些。此外, 房间容积不同,其最佳混响时间也不相同:房间容积大的,最佳混响时间要比容 积小的长一些。
体育馆的优缺点
一、体育馆向"多功能"模式发展
开放改革带来了丰富多彩的群众文化娱乐生活。80年代兴起的卡拉OK和歌舞厅等娱乐方式,至今不衰。而近年随着广大群众经济条件的改善,文化品位的提升,对生活质素和业余享受的观念也出现了很大变化。人们更加重现身体健康和体育锻炼.加上政府的导向(全民健身)特别是申奥(2008)和申亚(2010)的成功,在全国兴起了一个新建和改造体育场馆的热潮。其中一个特点值得注意----从国内到国外,不论是新建馆还是旧馆改造,普遍都设计成"多功能"的模式。不仅具备体育训练和比赛的功能,还承担集会、展览、庆典、文艺演出甚至放电影等多样功能。据资料介绍,美国旧金山某体育设施的使用比率中, 体育比赛占51.7%, 音乐会占19.4%, 马戏、冰上舞蹈占7.1%, 展览及其它活动占21.8%。澳大利亚墨尔本某体育馆,音乐演出占50%左右。这是体育产业化、社会化带来的发展动向。
二、多功能体育馆的主要特点
与一般"纯"体育功能的体育馆对比,多功能体育馆主要有以下一些特点:
1、通常在场地一侧设置固定的舞台,用作会议的讲台及文艺演出活动的表演场地。
2、除在比赛场地安装体育比赛专用照明系统和语言广播扩声系统外,还要参照剧场的模式增加设置舞台灯光和文艺演出(语言与音乐兼用)的扩声系统。
3、对建声设计的要求应高于"纯"体育功能的场馆。这是本文讨论的主题。
三、 体育馆建筑声学设计的有关标准
国家建设部近年先后颁发了JGJ/T131-2000体育馆声学设计及测量规程和JGJ/31-2003体育建筑设计规范两个文件,其中有关建声设计的指标及要求有以下几点:
〔1〕体育馆建筑声学条件应以保证语言清晰为主。
〔2〕不得产生明显的声聚焦、回声、颤动回声等音质缺陷。
〔3〕中小型体育馆混响时间在500-1000Hz范围内宜设置:1.3-1.5s。
各频率混响时间相对于500-1000Hz混响时间的比值:
频率〔Hz〕125 250 2000 4000
比值 1.0-1.3 1.0-1.1 0.9-1.0 0.8-0.9
〔4〕大厅上空应设置吸声材料或吸声构造。
〔5〕大厅四周的玻璃窗应设有吸声效果的窗帘。
〔6〕大面积墙面应做吸声处理。
〔7〕比赛场地周围的矮墙、看台栏板宜设置吸声构造,或控制倾斜角度和造型。
四、体育馆常见的声学缺陷
近年体育馆的建筑造型和结构大量采用暴露网架、不设吊顶甚至采用透光的屋顶材料,并流行弧形拱顶、圆形墙体和大面积玻璃窗或玻璃幕墙等形式,这都极易造成较严重的声学缺陷。而且建筑声学的设计项目往往是在建筑土建设计、装饰设计甚至施工的后期才介入,由于基本的建筑造型方面已难以改变,唯一办法是从声学装修结构方面进行调整和改造。这就大大增加了设计和施工的难度.
上述建筑结构造成的常见声学缺陷如:
1、声聚焦
声音在遇到凹的墙面或天花棚顶时将会产生声聚焦,使某些点或某些区域的声压级远远大于其它位置,导致声场分布极不均匀,出现"声染色"和"声反馈啸叫"等音质缺陷。体育馆的弧形拱顶和圆形墙体,是典型的容易产生声聚焦的结构。
2、颤动回声
在室内的一对平行墙之间,一个声音在两墙壁间来回反射产生多个重复的声音,称为颤动回声 。这在体育馆的大面积墙面以及比赛场地周围的矮墙和看台栏板等处最易产生。
3、混响时间偏长
和一般剧场、音乐厅、会议厅等厅堂相比,体育馆能做吸声处理的表面积比较少,所以混响时间普遍偏长。
五、 解决体育馆声学缺陷的可行措施
综上所述,体育馆存在的声学缺陷通常主要包括两个问题:一是混响时间过长,二是存在较严重的声聚焦和颤动回声。解决第一个问题的难度不算很大,只需在馆内增加适量的吸声材料(充分利用墙面和顶部),即可把混响时间缩短下来,其中的技术难点是设计计算的精确性和施工工艺的严谨性。
解决体育馆声学缺陷的较大难点在于如何消除由于弧形拱顶和圆形墙体所引起的严重声聚焦和颤动回声,而又不导致改变该馆原建筑设计和装饰设计所定下来的的整体造型、外观、采光功能和建筑风格,这才是建声设计中最具挑战性和创造性的关键。
对上述问题近年常见的解决措施有以下几种:
1)在棚顶安装大面积的平面吸声天花板。这种方法大量用于剧场、礼堂和屋顶为平面形的体育馆,效果很好。但如用于弧形拱顶或采用透光屋顶的体育馆,这种方式会完全破坏了原来的风格和采光功能,不可取。
2)在拱形网架下面吊挂大面积的吸声体。这方法曾用于北京市城北体育馆和广州中山纪念堂,效果良好。但用于弧形拱顶或采用透光屋顶材料的体育馆,同样影响观感,同时还影响原来已设计或安装好的照明灯具位置需要改变,不可取。
在顶棚中央吊挂大型吸声体以解决声聚焦等缺陷。
3)顺着拱顶网架安装条形吸声体(吸声条),这方法曾用于九运会主会场----广州体育馆,采用德国专利的吸声条,用量很大,价格昂贵,而效果仍未能达到十分理想。
4)向拱顶喷涂吸声浆体。这方法曾用于广州中山纪念堂的舞台后墙和侧台墙面,效果尚可,但由于施工工艺的原因(例如喷涂的厚度不易准确控制),不可能准确控制混响时间,只能用于某些小范围局部处理,不适合于大面积且要求精确的混响设计。
5)近年较常见的做法是采用事先经过测试的空间吸声体(预制件),顺着网架的形状吊挂于棚顶。可以达到比较良好且较精确的吸声效果。类似方法曾用于广东中山古镇体育馆、肇庆学院体育馆等场馆,效果良好。这个方案不会过分影响建筑风格,如果对空间吸声体的造型和色彩适当组合搭配,还会有一定的美化效果。
混响时间推荐是多少?
根据定义,T20、T30或者T60代表的都是指,当空间中某一稳衡的信号突然消失后,其反射声在该空间内衰减多少dB值(T20就是20dB,T30就是30dB)所需要的时间。由此我们假定某空间T30时间为Xs,而降低60dB相当于在已降低的30dB基础上再降30dB,因此该房间对应的T60应该是2Xs。同理,若T20值为Ys,那T60为3Ys。
补充:当然,在实际工作中,我们之所以测试T20、T30的原因主要有两点:一个是测试使用的仪器设备无法达到要求的声压级。比如测试时找不到一台可以发出90dB以上声压级的全频测试音箱(之所以在测T60时要大于60dB是因为即便在声学条件极好的空间内都依然可能存在有20dB甚至更高一些的环境噪声,且测试话筒与测试音箱有一定的距离以确保频响平直,但也会造成一定的衰减。如90dB可能在实测位置只有80dB左右,而房间底噪20dB,则实际等效的有效范围有60dB,从而可测),或者被使用的空间本身测试T60没有意义(如商场、火车站,其本底噪声非常大,足以影响衰减后的大部分衰减状态曲线)。因此,就前一种而言,这种算法只能作为一个不太严谨的参考,而后一种,实际应用上的意义也不是太大。
室内体育馆声学设计考虑哪些指标
在国内外已建的体育馆中,综合体育馆占绝大多数。由于综合体育馆可以进行大多数运动项目,列如:篮球、排球、手球、羽毛球、体操、击剑等;根据它的多功能使用要求,因而对场馆内音质的要求较高。其声学设计指标要综合各项运动项目的音质要求,根据各项功能中,音质要去较高的项目来定。
主要声学技术指标
1、混响时间
2、背景噪声
体育馆内做了声学处理后回声还是很大,这是什么原因啊?
体育馆存在的声学缺陷通常主要包括两个问题:一是混响时间过长,二是存在较严重的声聚焦和颤动回声。解决第一个问题的难度不算很大,只需在馆内增加适量的吸声材(充分利用墙面和顶部),即可把混响时间缩短下来,其中的技术难点是设计计算的精确性和施工工艺的严谨性。
解决体育馆声学缺陷的较大难点在于如何消除由于弧形拱顶和圆形墙体所引起的严重声聚焦和颤动回声,而又不导致改变该馆原建筑设计和装饰设计所定下来的的整体造型、外观、采光功能和建筑风格,这才是建声设计中最具挑战性和创造性的关键。
对上述问题近年常见的解决措施有以下几种:
1)在棚顶安装大面积的平面吸声天花板。这种方法大量用于剧场、礼堂和屋顶为平面形的体育馆,效果很好。但如用于弧形拱顶或采用透光屋顶的体育馆,这种方式会完全破坏了原来的风格和采光功能,不可取。
2)在拱形网架下面吊挂大面积的吸声体。这方法曾用于北京市城北体育馆和广州中山纪念堂,效果良好。但用于弧形拱顶或采用透光屋顶材料的体育馆,同样影响观感,同时还影响原来已设计或安装好的照明灯具位置需要改变,不可取。
在顶棚中央吊挂大型吸声体以解决声聚焦等缺陷。
3)顺着拱顶网架安装条形吸声体(吸声条),这方法曾用于九运会主会场----广州体育馆,采用德国专利的吸声条,用量很大,价格昂贵,而效果仍未能达到十分理想。
4)向拱顶喷涂吸声浆体。这方法曾用于广州中山纪念堂的舞台后墙和侧台墙面,效果尚可,但由于施工工艺的原因(例如喷涂的厚度不易准确控制),不可能准确控制混响时间,只能用于某些小范围局部处理,不适合于大面积且要求精确的混响设计。
5)近年较常见的做法是采用事先经过测试的空间吸声体(预制件),顺着网架的形状吊挂于棚顶。可以达到比较良好且较精确的吸声效果。类似方法曾用于广东中山古镇体育馆、肇庆学院体育馆等场馆,效果良好。这个方案不会过分影响建筑风格,如果对空间吸声体的造型和色彩适当组合搭配,还会有一定的美化效果。